
4-1

4. Database Administration

4.1 Overview of Database Administration

The Database Administrator or DBA, is the individual or group responsible for the installation,
configuration, update, maintenance, and overall integrity, performance and reliability of the SQL
Server database. In general, the DBA is concerned with the availability of the server, the
definition and management of resources allocated to the server, the definition and management of
databases and objects resident on the server, and the relationship between the server and the
operating system.

Each section in this chapter provides necessary background information, followed by step-by-step
instructions and actual scripts where applicable.

4.2 SQL Server Environment

4.2.1 Naming Conventions,

As one of the most important, yet least applied concepts, naming conventions are presented in this
chapter by examples according to the following rules.

Rule1: Regardless of the length of the name, it should indicate the function and/or content of the
object

Rule 2: Only easily understandable abbreviations should be used

Rule 3: Parts of names are separated by underscores “_”, only one optional suffix is permitted
(appended to the name by a . “.”)

Rule 4: The full path of the object is considered to be part of the name

The names of the databases and tables themselves may or may not follow the above rules, these
rules are specifically for the DBA to work with SQL Server objects, and files in the UNIX
environment.

All COTS software is installed in the /usr/ecs/OPS/COTS directory.

All SYBASE software is located in the Sybase home directory ($SYBASE).

All backups are located in $SYBASE/sybase_dumps directory, which may or may not be on a
separate physical disk.

Note

It is strongly recommended that backups be stored on a separate physical disk.

4-2

The database dumps are kept for a period of 2 days and also stored on a disk by Networker
everyday. The database dumps are named as follows:

dbname.dat_YYMMDDHHMM.Z

where MMDDHHMM is the “sortable” eight digit month, day, hour, and minute. For example,
on the date this chapter was written, a backup directory called backups_for_99021100024.Z

All SQL script files have the extension .sql as a suffix. Their names reference the objects they
create or functions they perform, and are all located in $SYBASE/scripts.

SQL statement must follow precise syntactical and structural rules, and may include only SQL
keywords, identifiers (names of databases, tables, or other database objects), operators, and
constants. The characters that can be used for each part of a SQL statement vary from installation
to installation and are determined in part by definitions in the default character set that version of
the server uses.

For example, the characters allowed for the SQL language, such as SQL keywords, special
characters, and Transact-SQL extensions, are more limited than the characters allowed for
identifiers. The set of characters which may be used for data is much larger and includes all the
characters that can be used for the SQL language or for identifiers.

The sections that follow describe the sets of characters that can be used for each part of a
statement. The section on identifiers also describes naming conventions for database objects.

4.2.1.1 SQL Data Characters

 The set of SQL data characters is the larger set from which both SQL language characters and
identifier characters are taken. Any character in SQL Server's character set, including both single-
byte and multibyte characters, may be used for data values.

4.2.1.2 SQL Language Characters

SQL keywords, Transact-SQL extensions, and special characters such as the comparison
operators > and <, can be represented only by 7-bit ASCII values A- Z, a -z, 0-9, and the
following ASCII characters:

4.2.1.3 Identifiers

Conventions for naming database objects apply throughout SQL Server software and
documentation. Identifiers can be up to 30 bytes in length, whether or not multibyte characters are
used. The first character of an identifier must be declared as an alphabetic character in the
character set definition in use on Server.

The @ sign or _ (underscore character) can also be used. The @ sign as the first character of an
identifier indicates a local variable.

Temporary table names must either begin with # (the pound sign) if they are created outside
tempdb or be preceded by "tempdb..".

4-3

Table names for temporary tables that exist outside tempdb should not exceed 13 bytes in length,
including the number sign, since SQL Server gives them an internal numeric suffix.

After the first character, identifiers can include characters declared as alphabetic, numeric, or the
character $, #, @, _, ¥ (yen), or £ (pound sterling). However, you cannot use two @@ symbols
together at the beginning of a named object, as in "@@myobject." This naming convention is
reserved for global variables, which are system-defined variables that SQL Server updates on an
ongoing basis.

The case sensitivity of SQL Server is set when the server is installed and can be changed by a
System Administrator. To see the setting for your server, execute this command: sp_helpsort

4.2.1.4 Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using delimited identifiers
allows you to avoid certain restrictions on object names. You can use double quotes to delimit
table, view, and column names; you cannot use them for other database objects.

Delimited identifiers can be reserved words, can begin with non-alphabetic characters, and can
include characters that would not otherwise be allowed. They cannot exceed 28 bytes.

Before creating or referencing a delimited identifier, you must execute:

set quoted_identifier on

The names of database objects need not be unique in a database.

However, column names and index names must be unique within a table, and other object names
must be unique for each owner within a database. Database names must be unique on SQL
Server.

If you try to create a column using a name that is not unique in the table or to create another
database object such as a table, a view, or a stored procedure, with a name that you have already
used in the same database, SQL Server responds with an error message.

You can uniquely identify a table or column by adding other names that qualify it, that is, the
database name, the owner's name, and, for a column, the table name or view name. Each of these
qualifiers is separated from the next by a period:

database.owner.table_name.column_name

database.owner.view_name.column_name

The same naming syntax applies to other database objects. You can refer to any object in a similar
fashion:

If the quoted_identifier option of the set command is on, you can use double quotes around
individual parts of a qualified object name.

Use a separate pair of quotes for each qualifier that requires quotes.

For example, use:

4-4

database.owner."table_name"."column_name"

rather than:

database.owner."table_name.column_name"

The full naming syntax is not always allowed in create statements because you cannot create a
view, procedure, rule, default, or trigger in a database other than the one you are currently in. The
naming conventions are indicated in the syntax as:

[[database.]owner.]object_name or: [owner.]object_name

The default value for owner is the current user, and the default value for database is the current
database. When you reference an object in SQL statements, other than create statements, without
qualifying it with the database name and owner name, SQL Server first looks at all the objects you
own, and then at the objects owned by the Database Owner, whose name in the database is "dbo."
As long as SQL Server is given enough information to identify an object, you need not type every
element of its name. Intermediate elements can be omitted and their positions indicated by
periods:

database..table_name

You must include the starting element, in this case, database, particularly if you are using this
syntax when creating tables. If you omit the starting element, you could, for example, create a
table named ..mytable. This naming convention prevents you from performing certain actions on
such a table, such as cursor updates.

When qualifying a column name and a table name in the same statement, be sure to use the same
naming abbreviations for each; they are evaluated as strings and must match or an error is
returned.

4.2.1.5 Identifying Remote Servers

You can execute stored procedures on a remote SQL Server, with the results from the stored
procedure printed on the terminal that called the procedure. The syntax for identifying a remote
server and the stored procedure is:

[execute] server.[database].[owner].procedure_name

You can omit the execute keyword when the remote procedure call is the first statement in a
batch. If other SQL statements precede the remote procedure call, you must use execute or exec.
You must give the server name and the stored procedure name. If you omit the database name,
SQL Server looks for procedure_name in your default database. If you give the database name,
you must also give the procedure owner's name, unless you own the procedure or the procedure
is owned by the Database Owner.

If the server name in interfaces is in uppercase letters, you must use it in uppercase letters in the
remote procedure call.

4-5

In all cases throughout this chapter, when actual examples are provided, those which reference
UNIX commands will be preceded by a “%”, and those that reference SQL statements will be
preceded by a number and a “>” (e.g. 1>sp_help tablename).

4-6

The terms described in the following table will be used throughout this chapter.

Table 4.2-1. SQL Server General Definitions
Term Definition

SQL Server The server in the Sybase client/server architecture. SQL Server
manages multiple databases and multiple users, keeps track of the actual
location of data on disks, maintains mapping of logical data description to
physical data storage, and maintains data and procedure caches in memory.

Client SYBASE Open Client software located in the /tools/sybOCv(TBD) directory for
SUN and HP platforms
SYBASE Open Client software located in the /tools/sybOCv(TBD) directory for
SGI platform

Backup Server Similar to the dataserver, it uses a separate UNIX process to off load the cycles
associated with DUMP and LOAD commands

backups The set of UNIX files containing full database dumps, transaction log dumps, and
dbcc output

dbcc Database Consistency Checker - a utility program designed to check the logical
and physical consistency of a database

sybase root directory /usr/ecs/OPS/COTS/sybase, this is the home directory for all SYBASE software
and related products and is referenced both in UNIX and in the rest of this
document as $SYBASE

interfaces file Lists the names and access paths for all servers and backup servers. This file is
located in the $SYBASE

sa System Administrator login, this is the superuser of the SQL Server

scripts UNIX script programs located in $SYBASE/scripts and related subdirectories
{$ecs_Home}/{mode}/custom/dbms/{subsystem}

showserver A utility invoked at the UNIX command prompt to display active servers, located
in $SYBASE/install.

SQL scripts SQL and command statements located in $SYBASE/scripts and related
subdirectories and /{$ecs_Home}/{mode}/custom/dbms/{subsystem}

Server Name The name of the database server for a specific application in different modes
EX. - PDPS application database server in OPS mode
EX.- Pdps_TS1 in TS1 mode
EX. -pdps _TS2 in TS2 mode

Port Numbers The port number to be utilized by the above listed servers.

Release Directory $SYBASE

SQL Structured Query Language

4.2.2 SQL Server Directory Structure

The sybase directory structure is described in the following table. Subdirectories under the
scripts can contain template files with easy to modify examples of SQL and SQL command
syntax.

4-7

Table 4.2.2-1. SYBASE Directory Structure
Directory Contains

$SYBASE/bin Utilities necessary to load, run, and access the server
$SYBASE /install Files used to start and initialize dataservers, backupserver and

to record server messages (errorlogs)
$SYBASE /lib db-lib, ct-lib, and xa-lib client library files used by applications to

gain access to the server (local to server)
*Applications use automounted libraries.

$SYBASE /scripts Root directory for all script files executed on the server
$SYBASE /sybase_dumps Root directory that contains all backup subdirectories, it is

recommended, but not required, that this directory be on a
separate physical disk. Dumps both database and transaction
logs.
**Backups are stored on disk in the backup subdirectories.

backup subdirectories
$SYBASE /sybase_dumps/dumps
$SYBASE /sybase_dumps/trans
$SYBASE /sybase_dumps/dumps/logs
$SYBASE /sybase_dumps/trans/logs
$SYBASE /sybase_dumps/Week1
$SYBASE /sybase_dumps/Week2
$SYBASE /sybase_dumps/Week1/logs
$SYBASE /sybase_dumps/Week2/logs

A cron job is run at night to move data from the current (week1)
directory to the previous (week2) directory. Then, a dump of the
databases and transaction logs is executed and is stored in the
current directory. All logs are written to the log directory. Files
are saved using the following naming convention::
dbname.dat.YYMMDDHHMM.Z - full database dumps
dbname.tran.YYMMDDHHMM.Z - full transaction log
dumpsdbname_backup.log.
dbname_ERR.log.MMDDHHMM - Error log
filesdbname_dbcc.log. MMDDHHMM

**xxdmh02 serves as a remote
Backup Server

**xx are the 2 letter codes to identify a DAAC site
(i.e., g0 = Goddard)

4.2.3 SQL Server Installation

SYBASE SQL Server Version (TDB) has been installed and configured by the ECS Installation
Staff. Shared memory and disk resources have been allocated and configured by the System
Administrator, and both the client and server portions have been set up by the DBA prior to
shipment. The following table describes parameters and options used during installation.

Table 4.2.3-1. SQL Server Parameters and Options
Parameters Name Brief Explanation/Settings

Retry Count 5 seconds

Retry Delay 5 seconds

Master device 28 Mb raw partition

Master Device Location

Backup Server Name SYB_BACKUP

sybsystemprocs $SYBASE/devices/(MachineName)_sybprocs.dat, 19 Mb and on it’s own
device

Errorlog $SYBASE/install/mode.errorlog (mode indicates the application)

Current default language us_english

4-8

Current default character set iso_8859-1 (Latin-1)

Current sort order Binary ordering, for the ISO 8859/1 or Latin-1
character set (iso_1).

Internal auditing On

sybsecurity database size 175 Mb - Varies – depends on disk allocations

sybsecurity device sybsecurity, positioned on a 175 Mb raw partition

The installation script files are located in the $SYBASE/install directory. SQL Server installation
is performed by an authorized user with the sybinit utility also located in the $SYBASE/install
directory. See your UNIX System Administrator and the SYBASE SQL Server Installation
Guide.

4.3 Database Administrator Responsibilities

The following subsections detail the most common functions that a DBA will perform.

4.3.1 Startup of SQL Server

Use startserver to start an SQL Server and/or a Backup Server. This command can only be
issued by the Sybase user.

Syntax: % startserver [-f runserverfile]

The “runserverfile” is contained in the $SYBASE/install directory.

Note

SQS server should be started after the SQL Server

4.3.2 Shutdown of SQL Server

Use shutdown to bring the server to a halt. This command can only be issued by the Sybase
System Administrator (sa).

Syntax:1> shutdown [backup_server_name]] [with] [wait] [with nowait]

2> go

The "with wait" is the default option. This option brings SQL Server down gracefully.

The “with nowait” option shuts down the SQL Server immediately without waiting for currently
executing statements to finish.

If you do not give a server name, shutdown shuts down the SQL Server you are using.

When you issue a shutdown command, SQL Server:

4-9

1. Disables logins, except for System Administrators

2. Performs a checkpoint in each database, flushing pages that have changed from memory
to disk

3. Waits for currently executing SQL statements or procedures to finish

In this way shutdown minimizes the amount of work that automatic recovery must do when you
restart SQL Server.

To see the names of the Backup Servers that are accessible from your SQL Server, execute

sp_helpserver. Use the value in the name column in the shutdown command. You can only shut
down a Backup Server that is:

 Listed in sysservers on your SQL Server, and

 Listed in your local interfaces file.

Note 1

It recommended that "with wait" option be used. This allows executing statements to finish.

Also it is recommended that you perform a checkpoint of all database prior to shutdown.

Note 2

SQS server should be started after the SQL Server

4.3.3 Showing SQL Server(s)

Use showserver to determine whether the SQL Server(s) and/or Backup Server(s) are running.

Syntax: % showserver

The “showserver” is contained in the $SYBASE/install directory

Example: UNIX processes running the various servers:

 UID PID PPID C STIME TTY TIME COMD

sybase 671 669 80 Apr 17 ? 80:05 /usr/ecs/OPS/COTS/Sybase/bin/dataserver -
d /dev/rdsk/c1t0d0s1 -g0sps06_srvr

sybase 665 663 80 Apr 17 ? 50:02 /usr/ecs/OPS/COTS/sybase/bin/backupserver
-g0sps06_backup -e/usr/ecs/OPS

4-10

4.4 Allocation of Resources

SQL Server can make reasonable default decisions about many aspects of storage management,
such as where databases, tables, and indexes are placed and how much space is allocated for each
one. However, the System Administrator has ultimate control over the allocation of disk
resources to SQL Server and the physical placement of databases, tables, and indexes on those
resources.

4.4.1 Creating Logical Devices

A logical device is created when the UNIX System Administrator determines that new disk space
is available for use by SYBASE software, databases, transaction logs, and/or backups. Either raw
disk partitions or UNIX filesystem partitions can be used to create a logical device. The creation
of a logical device is a mapping of physical space to a logical name and virtual device number
(vdevno) contained in the SQL Server master database. The disk init command is used to
initialize this space. After the disk initialization is complete, the space described by the physical
address is available to SQL Server for storage, and a row is added to the sysdevices table in the
master database.

A System Administrator initializes new database devices with the disk init command.

Disk Init does the following: Maps the specified physical disk device or operating system file to a
database device name

Lists the new device in master..sysdevices

Prepares the device for database storage

 Note

Before you run disk init, see the SQL Server installation and configuration guide for your
platform for information about choosing a database device and preparing it for use with SQL
Server. You may want to repartition the disks on your computer to provide maximum
performance for your Sybase databases.

Disk init divides the database devices into allocation units of 256 2K pages, a total of 1/2MB. In
each 256-page allocation unit, the disk init command initializes the first page as the allocation
page, which will contain information about the database (if any) that resides on the allocation unit.

 Note

After you run the disk init command, be sure to use dump database to dump the master database.
This makes recovery easier and safer in case master is damaged. If you add a device and fail to
back up master, you may be able to recover the changes with disk reinit.

Syntax: disk init

name = "device_name" ,

4-11

physname = "physicalname" ,

vdevno = virtual_device_number ,

size = number_of_blocks

[, vstart = virtual_address ,

 cntrltype = controller_number]

4.4.1.1 Example of Creating a Logical Device

A raw partition on a RAID device has been made available to SQL Server by the UNIX System
Administrator. Essentially, the actual name of the raw device c2t0d1s3 has had it’s ownership
changed to sybase and it’s group changed to user.

1. In $SYBASE/scripts/create.devices, DBA makes a script file from the template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.devices

 % cp template.sql data_dev1.sql

2. Appropriate items are modified so that the script file resembles the following:

1> disk init

2> name = “data_dev1”,

3> physname = “/dev/rdsk/c2t0d1s3”,

4> vdevno = 3,

5> size = 128000

6> go

7> sp_helpdevice data_dev1

8> go

3. DBA runs the script from the UNIX command prompt:

Syntax: % isql -Usa -Sservername -idata_dev1.sql -odata_dev1.out

4. DBA checks the data_dev1.out file for success

4.4.2 Creating and Altering Databases

A user database is created by the DBA with a script containing the create database command. A
database is created on one or more physical devices. Specifying the device is optional - but highly
recommended. When indicating the device, you use the logical name you specified as part of a

4-12

disk init (described above). Unlike the disk init command, the size of the database data and log
components is specified in MB instead of 2K pages.

4.4.2.1 Example of Creating a Database

The logical device data_dev1 has been created (as above) along with another device called
tx_log1 (for transaction logging).

1. In $SYBASE/scripts/create.databases directory, DBA makes a script file from the
template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.databases

 % cp template.sql userdb.sql

2. Appropriate items are modified so that the script file resembles the following:

1> create database UserDB on data_dev1 = 100 log on tx_log1 = 50 [with override]

2> go

3> sp_helpdb UserDB

4> go

3 DBA runs the script from the UNIX command prompt:

Syntax: %isql -Usa -Sservername -iuserdb.sql -ouserdb.out

4 DBA checks the userdb.out file for success

4.4.2.2 Example of Altering a Database

The user database UserDB has run out of space and it has been determined that it should be
increased by 50MB.

1 In $SYBASE/scripts/create.databases, DBA creates a script file containing the ALTER
DATABASE command (named alter_userdb.sql)

 Syntax: Alter database UserDB on data_dev3 = 50

2 DBA runs the script from the UNIX command prompt:

Syntax: % isql -Usa -Sservername -ialter_userdb.sql -oalter_userdb.out

3 DBA checks the alter_userdb.out file for success

4.4.2.3 Data Placement - Segmentation

Segments are named subsets of the database devices available to a particular SQL Server
database. Segment names are used in create table and create index commands to place tables or

4-13

indexes on specific database devices. Using segments allows the DBA to better control the size
of database objects and may improve performance by spreading i/o more evenly across devices.

Once the database device exists and is available, the segment can be defined with the system
stored procedure sp_addsegment.

Syntax: sp_addsegment segname, dbname, devname

After the segment has been defined in the current database, the create table or create index
commands use the optional clause “on segment_name” to place the object on a particular
segment.

Syntax: create table table_name (column_name datatype ...) [on segment_name]

 create [clustered | nonclustered] index index_name on table_name (columns)

Use sp_helpdb database_name to display the segments defined for that database.

Use sp_helpsegment segment_name to list the objects on the segment and show the mapped
devices.

4.4.2.3.1 Example of Creating a Segment

The DBA receives a request to create a segment for the storage of the DATA_INFO table
indexes in the pdps_db_ops database, on a separate physical disk. Two devices data_dev1 and
data_dev2 have already been created and are located on different physical disks.

1. In $SYBASE/scripts/create.segments directory, DBA makes a script file from the
template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.segments

 % cp template.sql segments_dev1.sql

2. The script file is modified so that it resembles the following:

1> sp_addsegment seg1_dev1, pdps, data_dev1

2> sp_addsegment seg1_dev2, pdps, data_dev2

3> go

3. DBA runs the script from the UNIX command prompt:

Syntax: %isql -Usa -Sservername -ipdps_db_ops_segments.sql \

 -opdps_db_ops_segments.out

4. DBA checks the pdps_segments.out file for success

5. When the table and indexes are created according to the instructions in section 4.4.6, the

“on seg1_dev1” must be appended to the DATA_INFO.sql create table statement,

4-14

and the “on seg1_dev2” must be appended to the DATA_INFO_indexes.sql CREATE

INDEX statement.

Syntax: create index DATA_INFO_IDX on DATA_INFO (DI_ID) on SEG1_DEV2

4.5 Loading a database you have created into a different database:

Occasionally, you may want to create an exact copy of a database of you system. First, dump the
existing database. Then create a database to load with this dump. The database does not have to
be the same size as the original. The only requirement is that the destination database must be at
least as large as the dumped database and have the same beginning fragments as the original
database. This information can be obtained from saved database creation scripts, or by running
the following command:

select segmap,'Size in MB'=size/512 from sysusages where dbid= db_id("database_name")

Example:

suppose your database was created with the following statement:

create database dbname on datadevice1 = 1000,

log on Logdevice1 = 200

go

alter device dbname on datadevice2 = 500 running:

select segmap,'Size in MB'=size/512 from sysusages

where dbid= db_id("dbname")

would return:segmap Size in MB

3 1000

4 200

3 500

You could create a 3GB database as follows and load your database into it (using "for load"
option will shorten database load time):

create database newdatabase on datadevice3 = 1000 log on logdevice3 = 200

for load

go

alter database newdatabase on datadevice 3=500 for load go

alter database newdatabase on datadevice4=300 for load go

alter database newdatabase on datadevice5=1000 for load go

4-15

load database newdatabase from dbname_dump go

4.6 Monitoring Space Usage

4. 6.1 Thresholds

Thresholds are defined on segments to provide a free space value at which a procedure is
executed to provide a warning or to take remedial action.

Use sp_addthreshold to define your own thresholds:

sp_addthreshold database_name, segment_name, free_space, procedure_name

where free_space is the number of free pages at which the threshold procedure executes;
procedure_name is the stored procedure which the threshold manager executes when the number
of free pages falls below the free_space value. Please see the section on Auditing later in this
chapter for an example of Thresholds.

Example of Threshold Commands mentioned above:

Sp_addthreshold CustomerDB, "default", 10230, CustDefaultSegWarn

4.7 Creating Database Objects

For special cases, creation (and modification) scripts are stored in $SYBASE/scripts/scriptname.
There should be a template for each type of object to be created.

4.7.1 Example of Creating a User Table

The DBA has received a request to create a new table in the pdps_db_ops database called
PGE_Statistics which has three column, pge_id, pge_statistic_type, and pge_statistic.

1. In the $SYBASE/scripts/create.db_objects directory, DBA creates a script file from the
proper template.

 Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.db_objects

 % cp table_template.sql PGE_Statistics_table.sql

2. Appropriate items are modified so that the script file resembles the following:

1> create table PGE_Statistics (

2> pge_id int,

3> pge_statistic_type int,

4-16

4> pge_statistic float)

5> go

6> sp_help PGE_Statistic

7> go

3. DBA runs the script from the UNIX command prompt:

Syntax: %isql -Usa -Sservername -iPGE_Statistics_table.sql \

 -oPGE_Statistics_table.out

4. DBA checks the PGE_Statistics_table.out file for success

Other objects are created in like manner but are not included here due to space considerations.

4.8 Creating and Managing Logins and Roles

Earlier versions of SQL Server administrative responsibilities needed to be executed by and
individual logged in –literally- as sa. Now specific user logins can be assigned components of
administrative responsibility, enabling you to track and audit administrative activities.

The three roles are sa_role (systems administrator) for administrative tasks, sso_role(site security
officer) for security tasks, and oper_rol (operator) for backup and recovery tasks.

In order to connect to a SQL Server a login must be created by the System Administrator or a
system security officer. Login details are stored in the syslogins table in the master database.

The system stored procedure sp_addlogin adds new login names to the server but does not grant
access to any user database.

Syntax: sp_addlogin login_name, password, [,default database ,language, fullname]

In order to gain access to a database, the System Administrator, system security officer, of the
specific database owner must “add” the user with the sp_adduser system stored procedure.

Syntax: 1> sp_adduserlogin_name [username, group_name]
2> go

4.8.1 Example of Creating a Login and Granting Database Access

The DBA has received a request to authorize John Q. Public to the pdps_db_ops database.

*It is a good practice to have a default_db, when you create a user account.

4-17

1. In the $SYBASE/scripts/create.users directory, DBA creates a script file containing the
sp_addlogin command (named public.sql)

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.users

% cp template.sql public.sql

2. DBA modifies appropriate fields so that the script resembles the following:

1> sp_addlogin jpublic,jpublic, default_db

2> go

3> use pdps (OPS mode) 4> go

5> sp_adduser jpublic

6> go

7> sp_helpuser

8> go

3. DBA runs the script from the UNIX command prompt:

Syntax: % isql -Usa -Sservername - public.sql -opublic.out

4. DBA checks the public.out file for success

4.9 Permissions

Permissions are used to control access within a database. The DBA uses the grant and revoke
statements to accomplish this. There are two types of permissions within a database, Object
and Command. In general, Object privileges control select, insert, update, delete, and execute
permissions on tables, views, and stored procedures. Command permissions control access to
the create statements for databases, defaults, procedures, rules, tables, and views.

The syntax for the grant and revoke statements are quite similar:

grant {all [privileges] | command_list }

 to { public | name_list | role_name }

revoke {all [privileges] | command_list }

 from { public | name_list | role_name }

4-18

4.9.1 Example of Granting Privileges to a Specific User

The DBA receives a request that John Q. Public should be able to read the DATA_INFO table
and read and update the SUBSCRIPTION_NOTIFICATION TABLE.

Syntax: 1> grant select on DATA_INFO to jpublic

2> grant select, update on SUBSCRIPTION_NOTIFICATION to jpublic

3> go

Note: It is recommended that the DBA store these command in a “.sql” file in the
$SYBASE/scripts/create.db_objects directory, along with their results.

4-19

4.10 Backup and Recovery

Table 4.10-1. Backup and Recovery Definitions
Term Definition

Backup Script Components Located in the $SYBASE directory, they include:
sybasedump, dmpdb_trns, copy_daily_dumps_to_week1,
copy_daily_dumps_to_week2

Backup files Defined in Table 4.2-2, the location of these files has been determined
during server setup

Backup Statements Generated from the sql in sybasedump these include calls to dbcc, Dump
Database, and Dump Transaction commands

Backup Subdirectory The only directory level underneath of the Backup Directory, defined in
Table 4.2-2.

Backup Summary An extraction of the successful Dump messages along with any errors
generated by the Backup Statements stored in the Backup Subdirectory.

4.10.1 Automatic Backups

The following are the list of all procedures and scripts files that are currently being used for
Sybase backups. There are cron jobs running at all sybase servers that have SQL server installed.
All dump files are currently written to LOCAL machine. The site DBA is responsible for
configuring the backup dump to the REMOTE sybase directory.

To check if the crontab is up and running, enter:

> crontab -l

Ø Example of the output:

Ø 019 * * 1-6 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_DumpDb

Ø 012 * * 1-6 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_DumpTran

Ø 021 * * 1-5 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_CkErrorLog

NOTE:

If the crontab is not running enter:

> crontab /usr/ecs/OPS/COTS/sybase/run_sybcron

The following files will be installed by EcCoAssist to the
/usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin directory:

EcCoDbSyb_README

EcCoDbSyb_DumpDb

EcCoDbSyb_DrumpTran

4-20

EcCoDbSyb_DbStat

EcCoDbSyb_SedFile

EcCoDbSyb_DboMail

EcCoDbSyb_SetupKsh

EcCoDbSyb_CkErrorLog

EcCoDbSyb_tran_log.awk

SCRIPTS DESCRIPTIONS

EcCoDbSyb_SetupKsh This file contains the SYBASE and DSQUERY (server)
environment setup. This file is call by EcCoDbSyb_DumpDb,
EcCoDbSyb_DrumpTran, and EcCoDbSyb_CkErrorLog scripts.

EcCoDbSyb_DumpDb This script contains the code to dump the databases. First, it
checks for any DBCC error on the master database, if there is any
error on the master, the script sends an email to the DBA and exit
the program. If the master database dump was successfull, then
the rest of the databases are dumped. Each database has a DBCC
check, if there is any error on the database then the database is
NOT dumped and an email is send to the DBA. At the end, an
status email is send, providing all the database names that were
succefully dumped

EcCoDbSyb_DumpTran This script contains the code to dump the transaction logs. This
dumps the transaction logs for each database, it check the error
log file, if the error Msg is 4207 or 4221 it will do a dump of the
database firt, then it will do the trasaction dump. If there is any
other error Msg then the transaction dump will fail and email will
be send. At the end, an status of the transaction log dumps is
email to the DBA

EcCoDbSyb_SedFile This file contains all the database that don't need to be dump (i.e.,
temp, model, etc.)

EcCoDbSyb_DboMail This file contains the email list of all the DBA's.

EcCoDbSyb_DbStat This script updates the index table of a database. This script is
called from EcCoDbSyb_DumpDb after each successfully
database dump.

EcCoDbSyb_CkErrorLog This script checks for specific database error messages from the
Sybase Error Log File every hour and emails the error messages

4-21

to the DBA's in the EcCoDbSyb_DboMailfile.

EcCoDbSyb_tran_log.awk This script matches the current hour with the hour the error
messages were enerated in the Error Log File. If errors found, the
messages are saved in a mailfile and sent to DBA's.

THE FOLLOWING FILES MUST BE MODIFIED BEFORE RUNNING ANY OF THE ABOVE
SCRIPTS:

EcCoDbSyb_SetupKsh Make user you have the SYBASE files under
/usr/ecs/OPS/COTS/sybase

EcCoDbSyb_SedFile Add any other database that might not need to be backed up.

The databases that are listed in this file do not need to be backed
up.

EcCoDbSyb_DboMail Add/delete the email of the DBA and any other email that might
need to be added/deleted. All the errors and status will be send to
them.

run_sybcron The following is an example on the crontab file that should be run
by a sybase user. The first one will run the EcCoDbSyb_DumpDb
script that dumps the databases at midnight from Monday to
Saturday.

The second one, EcCoDbSyb_DumpTran script that dumps the
transaction logs will run tree times a day, 10AM, 1PM and 4PM
from Monday to Saturday. The Third one,
EcCoDbSyb_CkErrorLog that check the SYBASE error log file
will run every hour from Monday to Saturday.

0 0 * * 1-6 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_DumpDb

0 10,13,16 * * 1-6 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_DumpTran

0 * ** 1-6 /usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin/EcCoDbSyb_CkErrorLog

NOTE: Make sure there is an OPS mode directory with all script files.

All these scripts reside in “/usr/ecs/OPS/CUSTOM/dbms/COM/DBAdmin” directory. The
assigned site DBA will be responsible for maintaining, modifying and applying necessary changes
that are applicable to their site as for (security, and backup schedule).

4-22

SQL Server backups are performed nightly by a cron job which runs the run_sybcron program
located in the $SYBASE/ directory. The following table of definitions will be used throughout
the rest of this section.

Table 4.10-2. Automatic Backup Components
Component Name Function(s)

run_sybcron File added with the crontab -e command, contains several executable cron
commands. Example: 00 19 * * 1-6 /data1/COTS/sybase/sybasedump

EcCoDbSyb_DumpDb Controlling script that performs the following functions:
run isql to create the Backup Statements
run isql to execute the Backup Statements
record the results of the Backup Statements in Backup Files
copy the Backup Files to the Backup Subdirectory
create the Backup Summary
 “greps” successful Dump statements along with any errors generated, sends
e-mail to the DBA and writes them to the backup_summary file

sp SQL Server password file - contains password for backup role

No intervention in the Automatic Backup Process is required by the DBA, though periodic checks
of the Backup Subdirectories are recommended.

4.10.2 Manual Backups

Manual backups can be performed at any time by the System Administrator and are recommended
for the following situations:

1. Any change to the master database - this includes new logins, devices, and databases

2. Any major change to user databases - a large ingest or deletion of data, definition of indexes

3. Other mission-critical activities - as defined by the DAAC Operations Supervisor.

Both the dump database and dump transaction command processing are off-loaded to the
backup server, and will not affect normal operations of the database. These commands are
performed by the System Administrator on appropriate databases as follows:

Syntax:

1> dump database master to
“/usr/ecs/OPS/COTS/sybase/sybase_dumps/dumps/dbname.dat.MMDDHHMM.”

2> go

After dumping the database, compress the dump file by executing:

%compress
/usr/ecs/OPS/COTS/sybase/sybase_dumps/dumps/dbname.dat.MMDDHHMM.

4-23

Syntax:

1> dump transaction pdps_db_ops to
“/usr/ecs/OPS/COTS/sybase/sybase_dumps/trans/pdps_OPS.tran.YYMMDDH

2> go

4.10.3 Manual Recovery

Manual recovery of a user database is performed by the System Administrator by the use of the
load database and load transaction commands. For issues concerning the master database,
please consult your System Administrator’s Guide for assistance. It is recommended that any user
database to be recovered be dropped and created with the for load option., The
databasename.sql along with any alter.databasename.sql scripts can be , combined into one
script which will re-create the user database with the for load option. This will insure the
success of the load database and load transaction commands.

4.10.4 The BulkCopy Utility

The bcp utility is located in the $SYBASE/bin directory and is designed to copy data to and from
SQL Server databases to operating system files.

4.10.4.1 Requirements for Using bcp

In general, you must supply the following information for transferring data to and from SQL
Server:

a. Name of the database and table

b. Name of the operating system file

c. Direction of the transfer (in or out)

In order to use bcp, you must have a SQL Server account and the appropriate permissions on the
database tables and operating system files that you will use. To copy data into a table, you must
have insert permission on that table. To copy data out to an operating system file, you must have
select permission on the following tables:

a. The table being copied

b. sysobjects

c. syscolumns

d. sysindexes

bcp Syntax

bcp [[database_name].owner.]table_name {in | out} datafile [-e errfile] [-n] [-c]

4-24

[-t field_terminator] [-r row_terminator] [-U username] [-S server]

4.10.4.2 Example of User Database Recovery

The database UserDB was created using the following script excerpt: (stored in
home/scripts/create.databases/userdb.sql)

create database UserDB on data_dev1 = 100 log on tx_log1 = 50 [with override]

and was modified using the following script excerpt:
(home/scripts/create.databases/alteruserdb.sql)

Alter database UserDB on data_dev1=50

For the purposes of this example, the full database backup and transaction log dumps were
successful and located in /usr/ecs/OPS/COTS/UserDB.dat and UserDB_tx.dat

1. In the $SYBASE/scripts/create.databases directory, DBA makes a script file from the
template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.databases

 % cp template.sql userdb_for_load.sql

2. Appropriate items are modified so that the script file resembles the following:

1> create database UserDB on data_dev2=100 log on tx_log2=50 for load

2> go

3> alter database UserDB on data_dev3=50

4> go

3. DBA saves the script in $SYBASE/scripts/create.databases/userdb_for_load.sql

4 DBA runs the script from the UNIX command prompt.

Syntax: %isql -Usa -Sservername -iuserdb_for_load.sql -ouserdb_for_load.out

5 DBA checks the userdb_for_load.out file for success

6 DBA loads the database from the full backup.

Syntax: 1> load database UserDB from

2> “/usr/ecs/OPS/COTS/sybase/sybase_dumps/week1/dbname.dat.MMDD

3> go

4-25

7 DBA loads the transaction file from the transaction file dump.

Syntax: 1> load transaction UserDB from

2> “/usr/ecs/OPS/COTS/sybase/sybase_dumps/week1/dbname.tran.MMD

3> go

4.11 Database Performance and Tuning

Once your application is up and running, the DBA monitors its performance, and may want to
customize and fine-tune it. Use the following software tools provided by SQL Server:

a. Setting query processing options with the set command

b. Setting database options with sp_dboption

c. Monitoring SQL Server activity with sp_monitor

d. Using update statistics to ensure that SQL Server makes the best use of existing indexes

e. Changing system variables using sp_configure and the reconfigure command

f. Placing objects on segments to spread i/o, improve throughput, etc. as described in section
4.4.4

For a complete discussion of issues related to SQL Server performance and tuning, refer to your
SYBASE SQL Server Performance and Tuning.

4.12 Installation of the Applications

DBA should have physical devices configured before installing either autosys or remedy. Both
applications use Sybase as their database.

4.12.1 Installation of the Application Database

The installation of the application databases has been automated using ECS Assistant. The
application databases are created using the DbBuild script which can only be invoked through
ECS Assistant or the Command Line. Scripts that ECS Assistant invokes are:

 DbBuild - Create new empty database and loads with initial data

 DbPatch - Upgrade to new schema while retaining existing data.

4.12.2 The AUTOSYS Application and other Configuration Issues

The AUTOSYS application works in tandem with PDPS/DPSs to schedule the jobs that run on
Science Processor. Autosys installation is performed in /usr/ecs/OPS/COTS by the auto install
program located in the autosys/install directory. The results of the installation are stored in an

4-26

autosys_install.scr file located in the AUTOSYS home directory (/use/ecs/OPS/COTS/autosys).
For pdps to run properly with AUTOSYS, the following activities are completed:

a. A user is defined named autosys

b. autosys user is added to the pdps database (OPS mode)

c. The autosys server is added to the sysservers table with sp_addserver

d. The server is added to the sysservers table on the AUTOSYS server with sp_addserver

4.12.3 Spatial Query Server (SQS)

SQS is a multi-threaded, Sybase Open Query database engine, which is required by the Science
Data Subsystem (SDSRV). This product allows definition of spatial data types, spatial operators,
and spatial indexing. SQS communicates with Sybase SQL Server to process SDSRV requests
to push and pull metadata. SDSRV database server resides on an SGI machine. SQS also, reside
on the same machine as SDSRV Sybase SQL Server.

• Named X1acg01 - where X is the DAAC specific identifying character.

• pathname - /usr/ecs/OPS/COTS/sqs222/bin/sqsserver

• Should have one dedicated CPU per instance running. Defaults to one instance now, but
may require additional instances later for performance reasons.

• Requires one entry in the Sybase “interfaces” file per instance of the SQS server to be run.

• Consult startup scripts in /etc/init.d/sybase and /etc/init.d/sqs_222

SQS requires a Sybase login with SA or sa_role and associated password to start. SQS
environment variables requirements:

• SYBASE = Location of the Sybase home directory. Example: /tools/sybOCv(TBD)

• PATH = Must include in this order - /usr/bin; /usr/sbin;$SYBASE/bin

• DSQUERY = Name of SQL Server to which to connect. From the
$SYBASE/intefaces file. Examples - g0acg01 _srvr

• DSLISTEN = Name of SQS server to use. Example - g0acg01_ srvr

• SQSUSER = Name of the user (SA or sa_role) for system connection.

• SQSPASSWORD = Password for the system connection login

The SQS startup script requires the following information:

SQSHOME = location of sqsserver binaries.

The following is a list of options that can be imbedded in the startup script, these options are
beneficial, but they are not required.

4-27

4.12.3.1 SQS STARTUP OPTIONS:

• -e path of the SQS server logfile. Example /usr/ecs/OPS/COTS/sqs222/sqs/bin/sqs_222.log

• -u number of concurrent SQS connections. Recommend minimum of 125. Example -u 125

• Usually started with a delay, after the SQL Server is started. This delay be sufficient for the
SQL server to recover and come-up.

• $SQSHOME/bin/sqsserver -e $SQSHOME/sqs_222.log -u $USER &

SQS has dependencies on Sybase, such as:

• Sybase must be running prior to starting SQS

• SQS user id that starts SQS, which is different from the application user ID must have admin
privileges

• SQS opens a connection to Sybase's because it writes to the Sybase System tables

• SQS server thread runs under the userid sa. In order to avoid confusion when monitoring this
thread, it is best to:

• create a separate login and userid specifically to monitor SQS

• grant sa_role authority to the userid created to monitor SQS

EXAMPLE: 1> sp_adduser sqs_mon

2> grant sa_role to sqs_mon

3> go

4.13 Passwords Security

Security has become a sensitive issue throughout the IT Industry. The ECS program is also
concern about security and the risks associated with security. As a result the following directive is
issued to all DAACs.

All System Administrators and Database Administrators at the sites are responsible for easonable
security measures when installing ECS custom software. This means:

1. Changing the permissions of online secure files to the minimum level required .

2. Backing up secure file(s) to removable media (floppy or tape) and removal of secure files
immediately after installation is complete.

3. The media should then be kept in a secure location.

The following file is affect as result of this requirement on the ECS program.

A. /usr/ecs/<MODE>/CUSTOM/dbms/<SUBSYSTEM>/Ec<server>SybaseLogins.sql

4-28

B. Set permissions to 711 (user read, write, execute, group and other read only)

Figures 4.X-1 and 4.x.-2 are the Technical Directives issued by the Director of Systems Engineering.

Figure 4.x-1 Technical Directive Figure 4.x-2 Technical Directive

